Stopy to roztwory stałe, składające się z co najmniej dwóch składników, przy czym przynajmniej jeden z nich jest metalem. Poprzez stapianie można otrzymać nadzwyczaj różnorodne i wszechstronne tworzywa, których właściwości mogą być w pewnych granicach dostosowane do naszych potrzeb. W przypadku mosiądzu, czyli stopu miedzi i cynku, ilości cynku wpływa na barwę otrzymanego produktu. Rozróżnia się m.in.:
mosiądz czerwony – zawartość cynku 20%,
mosiądz żółty – zawartość cynku 40% – otrzymany na filmie,
mosiądz biały – zawartość cynku 80%.
Do mosiądzu można dodawać również inne metale. Mosiądz z dodatkiem cyny nazywany jest „złotem mannheimskim”, stosowanym do wyrobu sztucznej biżuterii. Mosiądz domieszkowany manganem jest używany do produkcji polskich monet o nominałach 1, 2 i 5 groszy.
W doświadczeniu wykorzystaliśmy zwykłą kuchenkę mikrofalową i technikę opisaną w doświadczeniu #15 Wytapianie szkła w kuchence mikrofalowej (Lühken, A. 2001; 2010). Przed ogrzewaniem mieszaninę metali przykryto warstwą węgla aktywnego, w celu ochrony miedzi i cynku przed utlenianiem. W analogiczny sposób można wytopić brąz, czyli stop miedzi i cyny.
Literatura:
Lühken, A. (2001). Hochtemperaturchemie im Haushalts-Mikrowellenofen. CHEMKON, 8 (1), strony 7-14. doi:10.1002/ckon.20010080103
Lühken, A. (2010). Eksperymenty szkolne w domowej kuchence mikrofalowej. Niedziałki, 79(2), strony 29-38.
Głównym substratem stosowanym do produkcji szkła jest krzemionka czyli tlenek krzemu(IV). Temperatura topnienia tej substancji wynosi aż 1723 oC, a płynna krzemionka jest lepka i niewygodna do obróbki. Z tego powodu do produkcji szkła wykorzystuje się dodatek węglanu sodu, który może obniżyć temperaturę topnienia krzemionki nawet do 900 oC i zmniejsza jej lepkość. Podczas ogrzewania następuje termiczny rozkład węglanu sodu w wyniku czego powstaje dwutlenek węgla i tlenek sodu, który w połączeniu z krzemionką tworzy krzemian sodu.
Na2O + SiO2 → Na2SiO3
Związek ten jest jednak rozpuszczalny w wodzie, z tego powodu dodaje się węglan wapnia. W wyniku jego termicznego rozkładu powstaje tlenek wapnia, który stabilizuje mieszaninę i sprawia, że jest ona nierozpuszczalna w wodzie. Dodatek kwasu borowego i węglanu litu sprawia, że otrzymane szkło jest bardziej odporne termicznie i mechanicznie (Kolb i Kolb, 1979). Szkło można zabarwić dodając niewielką ilość np.: tlenku kobaltu(II) (ciemnoniebieski), siarczanu(VI) miedzi(II) (niebieski), tlenku chromu(III) (zielony) lub tlenku żelaza(III) (żółty).
W naszym doświadczeniu użyliśmy następującą mieszaninę:
10,6 g kwasu borowego,
4,2 g węglanu litu,
1,8 g węglanu sodu,
1,7 g węglanu wapnia,
1,0 g piasku kwarcowego,
Szczyptę bezwodnego siarczanu(VI) miedzi(II).
Mieszanina została opracowana przez A. Lühkena (Lühken, 2010) i wystarcza na ok. 3 doświadczenia.
To wytapiania szkła wykorzystaliśmy zwykłą kuchenkę mikrofalową i technikę GST (niem. Graphit-Suszeptor-Tiegel-Technik) (Arnim Lühken, 2001). Technika ta polega na ogrzewaniu w kuchence tygla umieszczonego w specjalnie to tego celu przygotowanym naczyniu żaroodpornym, np. doniczce. Przed wykonaniem doświadczenia doniczkę porcelanową należy wypełnić żaroodporną zaprawą murarską (np. do kominków). Następnie w zaprawie wykonujemy zagłębienie, w którym docelowo będzie umieszczany tygiel. Dobrze jest przygotować trochę więcej zaprawy, a z nadmiaru uformować podstawkę pod naczynie. Elementy pozostawiamy do wyschnięcia. Do gotowego naczynia najpierw należy wsypać węgiel granulowany o średnicy 1-4 mm, a następnie wcisnąć do środka tygiel. Węgiel pełni rolę susceptora – czyli substancji, która pochłania promieniowanie w zakresie mikrofal. Napromieniowany w kuchence mikrofalowej węgiel może osiągnąć temperaturę ponad 2000 oC. Według badań Mingosa i Baghursta węgiel już w pierwszej minucie osiąga temperaturę 1283 oC (Mingos i Baghurst, 1991).
Należy zwrócić uwagę, że nasze naczynie powinno być umieszczony w obszarze kuchenki, w który intensywność promieniowania jest największa tzw. hot-spot. W celu ustalenia położenia hot-spotu można wykorzystać zwilżony papier termoczuły (np. do faksu), zamieszczony na wysokości preparatu (np. na podstawce styropianowej). Hot-spot wskaże nam obszar o najsilniejszym zaczernieniu.
UWAGA! Substancje niebezpieczne:
Kwas borowy
Literatura:
Arnim Lühken, H. J. (2001). Hochtemperaturchemie im Haushalts-Mikrowellenofen. CHEMKON, 8 (1), strony 7-14. doi:10.1002/ckon.20010080103
Day, ,. M. i Hill, V. J. (1953, December). The Thermal Transformations of the Aluminas and their Hydrates. Journal of Physical Chemistry, 57 (9), strony 946-950. doi:10.1021/j150510a022
Kolb, D. i Kolb, K. E. (1979). The chemistry of glass. Journal of Chemical Education, 56 (9), strony 604-608. doi:10.1021/ed056p604
Lühken, A. (2010). Eksperymenty szkolne w domowej kuchence mikrofalowej. Niedziałki, 79(2), strony 29-38.
Mingos, D. M. i Baghurst, D. R. (1991). Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chemical Society Reviews, 20(1), strony 1-47.
Ta strona, jak każda inna, korzysta z plików cookies (tzw. ciasteczek). Pliki te m.in. ułatwiają Ci przeglądanie treści i zapamiętują Twoje ustawienia na kolejne wizyty. Klikając „Akceptuj wszystkie”, wyrażasz zgodę na użycie WSZYSTKICH plików cookie. Możesz również zmienić „Ustawienia plików cookie”, aby wyrazić zgodę na wybrane grupy plików.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.